Solution -
sabse pehle \[\sqrt{2}\] ki numerical value (up to 50 decimal places) yeh hoti hai \[\sqrt{2}\]
\[=1.41421356237309504880168872420969807856967187537694…\] numerical value 10 triliyan numbers ki calculation hai. For general use, isske value ko kaat diya jaata hai aur calculation ko aasaan banaane ke lie 1.414 ke roop mein upyog kiya jaata hai.
\[=1.414...\] Yeh value pehle se hi non-terminating value hogi.
issi tarah se \[\downarrow\]
\[\sqrt{3}=1.732\]
now, ab dono numbers ke 3 decimal places tak ke number, ko lelenge.
\[\sqrt{2}=1.414 ,\color{white}{s} \sqrt{3}=1.732\]
ab dono numbers ke beech se 1 decimal place ki value lelenge.
jese 1.4 se 1.7 ke beech me 1.5 ho skta hai
jese 1.4 se 1.7 ke beech me 1.6 hai
par kya 1.4 se 1.7 ke beech me 1.7 ho skta hai?
nahi !! kyunki wo condition ke equal hai.
nahi !! kyunki wo condition ke equal hai.
Two rational numbers lying between \[\sqrt{2} \color{white}{s}and\color{white}{s} \sqrt{3}\color{white}{s} is \color{white}{s}1.5,\color{white}{s}1.6\].
No comments:
Post a Comment